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I. INTRODUCTION

The problem of the excessive computational requirements of the
Kalman fiiter has been studied extensively in recent years., For most
practical applications, a solution of this problem is the critical fac-
tor in deciding whether or not the filter can be implemented in an
operational system.

The problem becomes more acute in the case of a delayed-state
Kalman filter due to the increased complexity of the filter equations
introduced by accounting for the connection of the measurement with the
previous state,

One approach to the solution of the computational problem has
been to reduce the dimension of the state and estimate only those state
variables that are of prime interest; see Levy [14], schmidt and
Lukesh {257, Simon and Stuvherud [27). The state variables ofter ne-
glected in this reduced filter method are the correlated noise processes
in the system. They are, in effect, modeled as uncorrelated noise
processes when this method.is used. Although optimal, the method pro-
posed by Simon and Stubberud [27] is subject to the restriction that the
reduction in the dimension cf the state is limited by the dimension of
the measuremert vector.

In another approach, Aoki and Huddle [3] censtructed a so-called
minimal order observer, utilizing the observer theory of Luenberger (15},

which was composed of two distinct sections. The first represented a




dyramic subsystem of the observed system whose output, under proper con-
ditions, was a linear transformat.on of the observed system state vector.
An estimate of the observed system state vector was constructed by mioi-
mizing the elements of the esti-ation error covariance matrix. The
method requires proper specif’cation of several matrices for the
steady-state condition of t-e filter.

Brock and Schmidc [ 4] proposed using preset or precomputed gains
based upon the high and low frequency response of the system in an iner-
tial navigatiun application. Sims and Melsa [ 28] investigated the
effect of using constant and exponential gain functions, wbich could be
precomputed, based on the results of simulation studies, Precomputation
of gains suffers from the requirement of a priori knowledge of the sys-
tem's behavior in order to predict adequately the form the gain should
take.

The method to be applied here o the delayed-state filter case
is due to Joseph [12] and was formalized by Pentecost [22]. The advan-
tage of this method is that the computational requirements are signifi-
cantly reduced, by partitioning of the system into lower dimensional
subsystems, with only minimum a priori knowledge of the system's behav-
ior; i.e., the gains are computed on-line.

The degradation in the performance of a continuous Kalman filter
introduced by the use of a continuous reduced-order filter has been
studied by Huddle and Wismer [11] Nishimura [16] performed a sensitiv-

ity analysis on the continuous Kalman filter performance for inaccuracies




in the specification of the noise covariance matrices and of the initial
state covariance matrix.

Griffin and Sage [9] studied the continuous and discrete Kalman
filter aud the continuous smocthing equations for sensitivity to
modeling and noise covariance matrix errors analogous to our method for
studying the performance of a suboptimal discrete~time delayed-state
filter due to simplified modeling., Large and small scale sensitivity
indices were defined also, which are not useful for our situatieca as
they are only practical for a small number of pavameter changes.

Heffes [10] studied the semsitivity of the gain computation to
modeling errors in the discrete Kalman filter and Sorensen [29] deter-
mined bounds on the estimation error covariance matrix of the optimal
Kalman filter.

Price [24] derived the recursive equations for the suboptimal
estimation error covariance matrix of the discrete~time Kalman filter
using a perturbed model by a method equivalent to the one used here
for the delayed-state filter., He then determined bounds oa the sub-
optimal estimation error covariance matrix and conditions on the mode.
changes under which it was asymptotically stable in the large, using
Lyapunov theory techniques. The determination of such bounds and con-
ditions for stability are not considered here for the delayed-state
filter. A method similar to Price's could be used for such a purpose,

We here derive expressions for the estimation error covariance

matrix for suboptimizations of the delayed-state filter based om
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modeling simplifications and alternate gain computations which place
less stringent computational requirements on the system computer than
does the optimal filter.
A method based upon the work of Pentecost [22] is presented for
the reduction of computational requirements of the delayed-state filter.
A performance index is defined for use as a relative measure of
the performance of the various suboptimizations compared to the optimal
filter. The resuits of a simulation of an integrated inertial navigation

system are presented as an application of the theoretical results.




II. THE DELAYED-STATE KALMAN FILTER

As previously noted, measurements which are linearly conmected to
not only the present state but the previous state as well require a
modification of the usual Kalman equations. This was first done by
Brown and Hartnan {77, The purpose of this chapter is to summarize
the resulting equatious and introduce the notation that will be used
in the sequel, The derivation of the equations will be presented in
the appendix.

The random process to be estimated is assumed to be a linear system

satisfying the vector differential equation
x(t) = A(t)x(t) + B(t)w(t) (2.1)

where x(t) is the n-dimensional state vector at time t, A(t) is an nxn
time-varying matrix at time t, w(t) is a p-dimensiona. white noise
input vector, and B(t) is the nxp time-varying matrix which connects
the input to the state at time t.

Solution of (2.1) results in, for the discrete-time case,

x(k+l) = ®(k+l,k)x (k) + u(k) (2.2)

where ®(k+1,k) is the nxn state transition matrix from stage k to stage
k+1, and {ﬁ(k)}, the plant noise, is a white noise sequence of n-dimen-

sional vectors.




The measurement model is assumed to be of the form
y(k+l) = MK&+L)x(k+l) + N(k+1)x(k) + v(k+l) (2.3)

where y(k+l) is an m-dimensional measurement vector, M(k+l) is an mxn
time-varying matrix which linearly connects the present state to the
measurement, N(k+l) is an mxn time-varying matrix which linearly connects
the previous state to the measurement, and'{v(k+1)} is an m-dimensional
white noise sequence, the neasurement noise,

The foliowing statistical properties of the system (2.2),(2.3) are

assumed:
1) {x(k),k = 0,1,...} and {y(j),j = 1,2,...}are gaussian with zero
means.
2) {u(k),k = 0,1,...} and {v(j),j = 1,2,..}»are independent gaus-

sian white noise with zero mean.

3) E{f(j)u'(k)} =0 tor all k 2 j, j = 0,1,..., where E{°} indi-
cates the expectation operator and the prime denotes the trans-
pose.

4) Edy(ju' (k)

0 forallkz2j+1, j=0,1,...

5) E&@G)v' (k)p = 0 for all j,k, j = 0,1,..., k = 1.2,...

6) Egy(iv' (k)

0 for ali k > j+ 1, j =1,2,...
7) Ev(i)v' (k)¢ = V(k)éjk, jsk =1,2,..., where 6jk is the Kronecker
delta function and V(k) is a positive semidefinite moam matrix.

8) E{F(j)u'(k)} = H(k)éjk, j,k = 0,1,..., where H(k) is a positive

semidefinite nxn matrix.




The recursive equations for estimating the state of the model (2.2)-

(2.3) at stage k can be summarized from Browm and Hartman as

Q(k) = M(K)P(k|k-1)M' (k) + V(k) + N(k)P(k-1|k-1)N' (k)

+ M(k) (i, k,-1)P(k-1|k-1)N" (k)

+ [M(k) & (k,k-1)P(k-1|k-1)N' (k) I’ (2.4)
K(k) = [P(k[k-1)M' (k) + 8Qk,k-1)P(k-1]k-DN' (&) 1Q 1 (k)  (2.5)
P(k|k) = Pk|k-1) - K(K)Q(K)K' (k) (2.6)

xk|k) = x(|k-1) + K@)y &) - MA)Rk|k-1) - N@)E&-1]k-1)]

.7)
ROH [K) = B, k)% (k k) (2.8)
P(kHl]k) = (k+1,k)P(klk) & (k+1,k) + H(k) 2.9)

wheve Q(klk) is the optimal estimate of the stage at stage k given
measurements through stage k and £(k+1|k) is the optimal estimate of
the state at stage k+l given measurements thkrough only stage k. K(k)
is the optimal gain matrix at stage k. P(k|k) is the covariance matrix
of the estimation error x(klk) = [x(k) - Q(klk)] and P(k+l]k) is the
covariance matrix of the estimation error ;kk+1|k) = [x(@+1) - ﬁ(k+1|k)].
Q(k) is the covariance matrix of tbc measurement estimation error
yklk-1) = [y®) - y@&ik-1)].

These recursive equations uniquely specify a solution at any time

A
k given the initial conditions, P(OIO), and x(0|0). A block diagram




indicating the structure of the delayed-state filter is shown in Fig. 1,
where the double lines denote vector signals and the blocks denote ma-

trix operationms.
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III. PERFORMANCE ANALYSIS OF THE DELAYED-STATE FILTER

When an analysis on a dynamical system is performed for which the
estimate of the state variables will ultimately be required, the ques-
tion arises as to how complete the model must be to adequately predict
the behavior of the system and yet result in computationally efficient
estimation algorithms. As an aid in performing such an analysis, it is
useful to have an algorithm for determining the degradation in perfor-
mance incurred in using a simplified model of the system dynamics.

Also, since the gain computation in the Kalman filter places the
most severe requirements on the computational abilities of the computer
in an operational system, it is sometimes desirable to use suboptimal
gains which are easier to compute. Thus, it is desirable to have an
algorithm to evaluate the degradation of the estimates as compared to
those estimates achieved with the optimal gain computation.

The purpose of this chapter is to derive algorithms which accom-
plish both of the above purposes. The method of attack for the simpli-
fied model case is analogous to, but different than, the method used
by Price [24]. For use as a figure of merit for the various models and
suboptimal filters that may be used, a performance index will be defined.
The effect of modeling differences in the noise covariances are not in-
cluded here but could easily be included by suitable modification of the

equations that follow.
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A. Performance Analysis of a Suboptimal Filter Using

A Simplified Model

Suppose that a change is made in the modeling of the system dynam-
ics for some reason, such as reducing small terms to zero or making
simplifying assumptions which result in changes in some terms or reducing
the number of state variables. The result is a perturbation in the
A(t) matrix of the system modet (2.1)-(2.3) which introduces a perturba-
tion in the filter equations, (2.4)-(2.9). T1f the original mecdel is
assumed to be the most complete and correct ome possible, it will re-
sult in optimal estimates by the filter. Thus, if the model is
changed or simplified, suboptimal estimates wil). result. We will call
this model the design model.

Let the original system model be described by (from chapter II)

x(k+l) = ®k+1,k)x(k) + ulk)
3.1)
y (k+l) = M(k+1)x(k+l) + N(k+l)x(k) + v(k+l)
2nd the design system model by
x, (k+l) = & (k+1,k)x, (k) + u(k)
d d d (3.2)
yd(k+1) = M(k+1)xd(k+1) + N(k+1)xd(k) + v(k+l)

where Qd = &+ 5%, The perturbation in the original system tramnsition
matrix 0% results from computing the transition matrix @d using the
design system model, A(t) + OA(t). In general, there is no simple rela-

tionship between OA(t) and 8&(k+l,k) and one must compute both
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transition matrices to get the value of &®(k+l,k) at any stage k.
By using the design system model in the optimal filter equationms,

A
we obtain an optimal estimate x, of Xqs if y4 Were the available mea-

d

surement. The estimation error covariance matrix for estimating Xy

given Yq is
B klk) = E{[xd(k) - Qd(klkﬂgxd(k) - £d(k|k)] } (3.3)

We vish to use the gain obtained from the design system optimal
filter and the design system transition matrix to obtzin a (suboptimal)

estimate of x. The estimator is of the form
A A A
x &l = x_Gle-1) + & (0lyGo) - v k-1, (3.4)

The only difference between this estimator and the one for the optimal
filter for the design system is that v is used instead of Yq since Y4 is
not physically available. ;s(klk-l) is computed as Qd(k,k-l)ﬁs(k-1|k-1).
The Pd used in computing Kd is not the estimation error covariance
matrix for the suboptimal filter, but is the estimation error covariance
matrix for estimating X4qe The estimation error covariance matrix for
the optimal filter for the original system, where ¢ and y are used in

the filter equations of chapter II, is
A A
P(k|k) = E{[x(k) - x(k|k)Ix k) - x(klk)]'}. (3.5)

The estimation error covariance matrix for the suboptimal filter, using



i3

%iin the optimal gain computation and in the estimator with y, is
A - A
Ps(klk) = E{[x(k) - x, (e 1) Jix (k) - xs(klk)J'} (3.6)

To evaluate any degradation in performance, we wish to compare P and Ps’
Thus an expression for Ps is required. The relationship between the
filters mentioned above is represented schematically in Fig. 2.

In order to evaluate Ps, we note the following:

A A A
x (et k) B+, k)x k) + EB(kHL  k)x xlx), 3.7

x (k+1]k)

B, k)x (e lk) - 6§(k+1,k).s?s(klk) +uk), (3.8)
% (i) = 20eHI0R (ki) - 820+, I0x_ Gelk) + u (k)
- Ky (kH)F (k+1]k). (3.9)

where

¥, Gt = y@tD) - yGrt]k)

M (1) B(k+1,k) + N(k+1)1§s (k%)
- MQkH) 83 (cHL k)x_(k|Kk) + v(k+1). (3.10)

With respect to the estimation error covariance matrix derivatioi., the

chief difference between the optimal filter and the suboptimal filter

considered here is that x satisfies the original system homogeneous
state equation and the §; does not., As we shall see, considerable

complexity results.
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We first compute the a priori suboptimal estimation error covariznce

matrix

P_ (k+l k) = E{;{S (etL lkﬁ; (k+1 Ik)}.
After a great deal of manipulation of (3.7)-(3.10), we obtain
P_(k+l k) = Bk+1,k)P_ (k]k) 2 (k+1,k)
+ H(k) + 6%®(k+1,k)S (k)& ¥ (k+1,k)
- % (k+1,k)[R(k) - S(k)IO& (k+1,k)
- {@(k+1,k)[n(k) - S(k)Jo¥ (k+1,k)}'. (3.11)
1f second-order effects are neglected,
P_ (k+1 k) = B+ k)P (k|k) & (k+1,k) + H(k)
- $(k+1,k)[R(k) - S(k)]JO® (k+1,k)
- i’i’(k-l-l,k)[R(k) - s(k)Joqe'(kﬂ,k)}'. (3.12)

We see that Ps(k+l|k) is of the same form as the a priori estimation

error covariance matrix for the optimal filter plus some correction

terms due to the change in modeling.

To compute Ps(k+1lk+1), rewrite ;;(k+1|k+1) as

x et fletl) = % Gerd k) - K, (1) (et %) (3.13)
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and ;;(k+llk) as

y, et i) = MkHDE (RH11K) + NGHDF (k) + v@eHl). (3.14)

P, (tl|k+l) = E{S?S (et [ 1) (et [kl )}

Note that E;(k+1|k+1) and ;;(k+1|k) are of the same form as in the opti-
mal filter. Thus, the first few steps of the derivation are the same
as in the optimal filter. The similarity stops when one tries to use
tke equation for the gain to simplify the equation to the form of
equation (2.6). The problem is that the gain is computed using Pd’ not
Ps’ which of course is due to the suloptimization of the filter.
After some routine manipulation,
P_(ktllktl) = P_ (HiK) - K, (et]) (MQH)E (k+1 k)
+ N+ P (k) ) (k1K) ]
. {Kd[M(kﬂ)Ps (k+1|k) + N(k+1)Ps(klk)@é(kﬂ,k)]}'
+ Ky (k+1){M(k+1)PS (k+1 k)M’ (k+1)
+ Mk 1) & (), k)P (k |k)N' (k+1)
+ [M(k+1)<§d(k+1,k)Ps(k|k)N' (k+1) 1"

+ N(k+1)P_ Gi{kON' (k+1) + V(k+1)}l(c'l(k+1). (3.15)

In order to conmpletely specify Ps, recursive relations for R(k) and S(k)

must be found, where

Rk) = E[x(k):?; (k|k)]
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R(k) = ¥(k,k-1)[R(k-1) - S(k-1)][1+{u(k)[§(k,k-1)
- 5@k, k-1)1+ N(k)}'Kc'l(k)] - é(k,k-l)s(k-l)ﬁ@d(k,k-l)
+ Kd(k)M(k)éé(k,k-l)]' + 3&,k-1)[R (k-1)
- S (k-1) JIM@) B(k,k-1) + N(k) J'KY k) . (3.16)

Meglecting second-order effects,

s Q) = Elx_ Gi0x? |10 ]

Qd(k,k-l)s (k-l)@l(k,k-l)

+ 8, (k,k-1)R" (k-1)[M () 3k, k-1) + N (k) J'K} ()

- éd(k,k~1)s(k-l){u(k)éd(k,k-l) +N(k)]'l(('1(k)

+ K} (k){R’ &-1)[M @) 3G, k-1) + N(k)]

- S(k-l)[M(k)@d(k,k-l) + N(k)]'}'éd(k,k-l)

+ Ky (k) {[M(k)é(k,k-n + N () Jp_ (k-1 k-1) (M) (K, k-1)
+ Nk ]+ [MK)® &k, k1) + N(k) J[R(k-1)

- S(k-1)]88" (k,k-1)M' (k) —{[M(k)§ (k,k-1)

+ N (&) IR (k-1) - S(k-1)18% (k,k-1)M' (k)}'

+ V(k)]K('l(k). (3.17)

In order for the above equations to be uniquely specified, initial values
of R(k) and S(k) are required. Since Q(OIO) is usually chosen as zero,

R(0) and S(0) are null matrices.
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From the implementation viewpoint, note that vomputation of Ps is
not required in the actual operation of the filter. However, evaluation
of PS can be used to study the performance of the suboptimal filter com-
pared to the performance of the optimal filter. In some cases, when
the actual state trajectory is known in the simulation study, evaluation
of Ps may not be necessary, only a comparison of the optimal estimates
and the suboptimal estimates with the actual state trajectory may be

sufficient to study the relative performance of the filters.

B. Performance Analysis of a Suboptimal Filter Using
A Simplifed Gain Computation

1f the original model is used, but a suboptimal gain computation
is used for some reason or another, the P(k'k) given by equation (2.6)
is not the covariance matrix of the a posteriori estimation error. The
a priori covariance matrix of the estimation error is still given by
equation (2.9) and the covariance matrix of the measurement estimation

error is still given by equation (2.4).

Let Ps(k+1|k+1) be the covariance matrix of the a posteriori esti-
mation error resulting from using a suboptimal gain, Ks(k+1) = K(k+1)
+ % (k+l), in the optimal filter equations.

Ps(k+1|k+1) is given by

P_ (kHl [k+1) E[?c's (et {et1)x! (et [+ ]

(1 - K (et1)M Q) I &+ k)1 - K, (k+1)M(k+1) ]’

- K (k+1)Ps(klk)<l>' (LKL - K GetM+1) 1!
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- {:(e‘(kﬂ)Ps k)& (et1,k)[1 - K (k+1)M(k+1)1'}'

+ K &) INGH) P (k [KON' (k1) + V) K GeHl). (3.18)

Expanding (3.18) and negl~cting second order effects,

P_ (k1 |k+1) = [1 - K (HDM(k+1) IP_ (it lk)[1 - K(k+1)M(k+1) ]

+ K(H)P_ (klk)®' (k+1,k)[T - K(KH)M(k+1) ]’

- {K(k+1)?s (k|K) &' (k+1,k)[1 - l((k-~1)M(k+1)]'}'

+ KAL) [N (1P (k |KON' (k+1) + V(k+1) K* (k+1)

- & () MAH)P_ (et k) + Q(k+1,k)Ps(klk)N'(k+1)
+ N(k+1)Ps(k|k)Q' (ct1,k) ] + K (H1)Q (k+L)K' (k1)

+ 1<(k+1)[Qs (k+l) - M(k+L)P_ k+1 QM (k+1) JOK' k+1).

(3.19)
As indicated above Qs and Ps(k+1|k) are given by

Q (k+1) = M(k+1)P_ (k1 lOM' (k1) + Vik+l) + N(k+1)Ps(k|k)N' (k+1)
+ M(kH) 241, K)P_ (k JKON' (k+1)
+ [M(k+1) 83, K) P kKON (k+1) ] (3.20)
and
P &+ k) = B(kH k)P k[k) &' (k+1,k) + H(K). (3.21)
The above equations can be used to study how suboptimal a particu-

iar filter is and how sensitive the quality of the estimates are to

various methods of computing the gain matrix.



20

C. Definition of a Performance Index

By using the results of section A, we can obtain the perturbation
in the estimation error covariance matrix for a particular design model.
Likewise, using the results obtained in the last section, the perturba-
tion in the estimation error covariance matrix can be computed from a
knowledge of the perturbation in the optimal gain due to a suboptimal
gain computation. Knowledge of these quantities may be useful, but
their magnitude does unot give a complete picture of how the overall
performance of the suboptimal filter compares to the optimal filter,
The information needed is contained in the value of the cost functional
for the two cases.

The cost functional considered here is the mean squared estimation
error. Let J(k) be the value of the cost functional for the optimal
filter aand Js(k) be the value of the cost functional for the suboptimal
filter. From the optimzlity of J, we know that Js(k) 2 J(k) for all k.

Then

J(k) - tr E{;(k‘k);' (klk)}

= tr P(k|k)

J (k) = er E{;S (k |1\)?{; (klk)}

= tr P(k'%) + tr OP(klk).
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Define a performance index w(k) as

Js(k) - J(k)
pk) = B T u (3.22)

tr OP(k|k)

tr P(klk)
We see that p for fixed k has the properties that it is zero and a
minimum when the suboptimal filter is actually optimal and is a mono-
tonically increasing function o? tr OP; i.e., the more suboptimal a
filter with respect to the given cost functional, the larger the value of .

This performance index could be used to evaluate the relative

performance of a suboptimal filter compared to the optimal one and to
evaluate the relative sensitivity of the optimal filter to modeling

variations.
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IV. SUBOPTIMIZATION OF THE DELAYED-STATE FILTER

In this chapter, we derive a suboptimal delayed-state filter based
upon a method originated by Joseph [12] and Pentecost [22] The basic
idea is to transform the original system into a collection of smaller
subsystems, Optimal estimatioa is then performed on each of the sub-
systems. An estimate for the total state vector is thea reconstructed
frem the estimates of the subsystem state vectors, This estimate is
suboptimal since the subsystem estimators zre unable to make full use of
the information available regarding the total state, because such infor-
mation is distributed among the subsystems. In practice, the estimates
of the subsystem state vectors are not ne ded to reconstruct the total
system state vector estimate; only the subsystem gain matrices are
needed.

For convenience, we repeat the total svstem model equations as

given in chapter II:

x(k+1) = #(k+l,k)x(k) + u(k)

4.1)

y(k+l) = M(k+1l)x(k--1) + N(k+l)x(k) + v(k+l).

The previous assumptions 1bout this model made in Chapter II are

assumed here also.
r

Let nj be the dimension of the jth subsystem, where jginj 2 n and
r is the number of subsystems. Let m, be the dimension of the jth
r

subsystem measurement vector, jglmj 2 m. Define the jth subsystem state
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= .t
vector Sj and the j h subsystem measurement vector ﬂj by

§J. (k) ij (k)

4.2)

le (k) Djy (k)

where the linear transformations Cj and Dj are njxn and mjxm respec-
tively and have maximal rank. We choose Cj and Dj to be time-invariant
to avoid any more complexity in the filter than necessary.

At this point, we could, by sheer brute-force, proceed to design
the optimal subsystem estimator as in the design of the optimal estima-
tor for the total system. However, we will take a simpler route by
menipulating the subsystem equations into the form of (4.1) and then
make use of the results already available in the appendix.

From (4.2), we approximate x and y by

+
x(k) = C.§5. (k)
33 4.3)
_ ot
yk) = Djﬂj (k)

where the superscript plus denotes the pseudo-inverse; i.e.,
¢t =crec.en
J J 33
Premultiplying the first equation of (4.1) by Cj and the second

equation by Dj and substituting in (4.2) and (4.3), we obtain

- Q -4
Sj(k+1) Cj (k+1,k)Cj§j(k) + Cju(k)

4.4)

+. +-
7, (k+1 D.M(k#+1)C.%, (k+1) + D .N(k+1)C.S, (k) + D ,v(k+l
J( ) J( )JJ( J( )J‘:J() 5V )
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Denoting ¢., M., N,, u,, and v, b
g J’ J’ j? 3? j y

¢ (et k) = cjé(k+1,k)c;

+
M. (k+1) = D ,M(k+1)C,
5 (k1) MEHC,
+
N.(k+l) = D .N(k+1)C, .
5 (kH1) J()J (4.5)

uj(k) = Cju(k)

vj(k+1) = Djv(k+1)

we see that the subsystem equations are of the same form as (4.1).

;J. (k+1) <pJ. (k+1,k)§j k) + uj k)

(4.6)

R, . . g, . .
J(k+1) Mj(k+1)§j(k+1) + NJ(k+1)SJ(k) + vJ(k+1)

Now that the subsystem equations have been put into the proper form,
it is a routine matter to apply the results of Brown and Hartman [7] to
each subsystem., Fcr the jth subsystem, the optim~l delayed-state filter

equations are

Q; (k) = M, ()P, (klk-l)MJ. (k) +V (k) + N, P, (k-1|k-1)Nj (k)
+ M, (k)zj(k,k-l)Pj (k-llk-l)Nj k)
+ [Mj(k)éj(k,k-l)Pj(k-lIk-I)NE(k)]' &%.7)
=1 - ' c k- - - ' -1
; K (k) = _Pj(k|k MY (k) + ¢ (k,k 1)Pj(k 1k 1)Nj(k)]Qj (k)

(4.8)

(klk) = P, (k|k-~ - X ! .
P k) ¢ lk-1) K, ()Q, (0K} (k) 4.9)
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A A A A
5 (k |k) %J. (k|k-1) + KJ.(k)[T]j (k) - M, ()3, (k |k-1) N, (k)éj (k-1]k-1)]

(4.10)
ﬁ A
Sj(k-i-llk) = & (k+1,k)€j(k|k) (4.11)
P, (k+1|k) = @j(k+1,k)9j(k|k)®j (k+1,k) + H (k) (4.12)
where
Vj(k) = E{Yj(k)vj(k)} = DjV(k)Dj
and
H k) = E{uj (k)uj (k)} = CjH(k)CJ..

We assume that the estimate of the total system state vector can
be reconstructed from the estimates of the subsystem state vectors by

the relations

r
A
2k |k-1) = 2 Fjéj(klk-n (4.13)
j=1
r
A A
Ak k) = z F 5k (4.14)
j=1

where the Fj and Cj must satisfy

T

F.C. =1 4,15
:E 1] (4.25)
=1

in order that the total state vector is reccomnstrucited fruom the subsystem
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state vectors.

From (4.14) and (4.10), we have

r r
A A A
x(k |k) :E Fjbj(klk-l)i- ji FjKj(k)Dj[y(k) - M(k)x(k|k-1)
i=1

§=1

A
- N)x (k-1]k-1)]
r

A 2
x ik |k-1) + ji SRGLAR S
j=1

A A (4016)
- M(K)x(k|k-1) - N(k)x(k-1]k-1)] .

A comparison of (4.16) and (2.15) shows that the partitioned-state

estimation method implies that

r
Kk) = ji F K, (0D .17)
o1

It is now obvious from equations (4.16) and (4.17) that estimates
of the subsystem state vectors are not needed in order to estimate the
total system state vector. With the estimator now in the form of (4.16),

the constraint (4.15) is no longer needed.
A
[~

Mote that bj

A
©0lo) = Djx(0|0) and

A A
=€ . 3 - £ ]
P, (0]0) E{F.j(O) J.(oIO)][>J.(0) 5; 010 }

= cjp(o|0)cj. (4.18)

Thus, the suboptimal f.lter requires the same initial conditions as the

optimal filter. A schematic diagram of the suboptima? £,lter is given
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in Fig. 3.

Summarizing the suboptimal filtering equations, for j=l,...,r,

x(k|k-1) = 8@, k-1)% (k-1 |k-1) (4.19)
_ et
8, (,k-1) = C,8(k,k-C (4.20)
Pj(klk-l) =2 (k,k-l)Pj(k-l‘k-l)@J.(k,k-l) +H (k-1) (.21
Q) = M, (k)PJ.(klk-l)M_'i () + V() + N (k)P (k-1|k~1)Nj (k)
+ Mj (k) éj (k,k-l)Pj(k-1|k-1)Nj (k)
+ [Mj(k) Qj(k,k-l)Pj(k-llk-l)NS )] (4.22)

= - ' P - - - ] -1
K (k) [Pj(klk I)Mj(k) + B0k I)Pj(k 1|k-1)N (k)]Qj (k)

i
(4.23)
Pj(klk) = Pj(klk-l) - B, ()Q, (K] (k) (%.24)
A A A
x(klk) = x(k|k-1) + R@Iy®k) - ME&)x(k]k-1)
A
- N(k)x(k-1]k-1)] (4.25)

where K(k) is given by equation (4.17).

Equation (4.24) is true only if the gain used is the optimal gain
for the jth subsystem and is computed exactly, If Kj is not computed
exactly (truncation errors may occur), it is not guaranteed that
Pj(k\k) will remain positive definite. To avoid this problem, it is
desirable to have an alternate way of computing Pj(klk) which will

assure positive definiteness. The required form is
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P klk) = {@J. (k,k-1) = K, () TM, (g (k,ke1) + N, (k)]}Pj(k—J lk-1)-

{Qj (k,k-1) - Kj(k)[MJ.(k)é(k,k-l) + N, (k)]}

+ Kj (k)vj(k)x_'1 (k) + H(k-1). (4.26)

By using the above equation and equation (4.21), the a priori subsystem
estimation error, covariance matrix can be eliminated from equations

(4.22) and (4.23) for Qj and Kj respectively, Qj is then given by
(k) = M, . (k,k-1)P, (k-1lk-1)&" (k,k-1)M'(k
Q(k) = M, () &, (o, k-1DP, (e-1ie-1) & i, k1M (k)

+ M (OR, (= 1My (k) +V, () + Nj(k)Pj (k-1|k-1)N O

.

+ M (k)éj (k,k-l)Pj (k-llk-l)N_'i k)

+ [nj (k)@j (k,k-_)Pj (k-llk-l)N:i k)1 %.27)
and Kj is given by

Kj &) = {@j(k,k-l)Pj (k-1|k-1)[Mj (k) Qj (k,k-1) + Nj x)]

, -1
+ Hj(k-l)Mj(k)}Qj ) . (4.28)

Notice that the computations in equations (4.21)-(4.24) involve
matrices of order less than mxm and nxn. The partitioning of the sys-
tem into subsystems is not unique. The optimum partitioning for a par-
ticular problem at this time must be found by trial and error and phys-
ical intuition. If the subsystem state vectors are not cross-coupled
with any other of the subsystem state vectors, either through the plant

or measurement equations or through the noise processes, then this
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scheme would be optimal, as indicated by Aoki [1] and Pentecost [22],
At the present time, there is no optimal method for choosing the Fj
matrices. Usually, they are taken to be C;.

As an aid in evaluating the reduction in the amount of required
computation achieved by the use of thé above results, it is useful to
compute the number of multiplication and addition operations required
in one step by the filters.

Assuming the inverse is computed using the gaussian elimination
method, the number of multiplication operations M.o and the number of

addition operations A0 required in one step by the optimal filter equa-

tions given in chapter II are given by

Mo = 2n3 + n2(1+7m) + nm(5+4m) + m3 4.29)
A, = 2n3 + 70%m - 3om + 3nm2 + m(mz+2) - . (4.30)

The number of multiplication operations Ms and the number of addition
operations AS required in one step by the suboptimal filter equations

(4.17), (4.19)-(4.25) are given by

r
M.S = n2+ 5nm + :E £2n§ + 6njm§ + 8n§mj + njnm + mg] “.,31)
ji=1
T
As = m(3n+1) + jz [2n3 + 8n§mj + njmj(hmj~7)
j=1

2 ) 3
- nj + njm(mj+n 1) + mj + mj]. (4.32)
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As an example, consider a sixteen-dimensional system with a scalar
measurement. Three subsystems are chosen, two are three-dimensional and
one is twelve-dimensional, The scalar measurement is used in all three

subsystems, Then

M
(o] s

N
—
(=]
w
o
W
=

i

5615

A = 9971 A
o} s

5011

As a consequence of using the partitioned suboptimal filter, a 56% re-
duction in the number of multiplication operations is achieved and a
50% reduction in the number of addition operations required in one
step. The substantial reduction in the multiplication operations is
particularly significant since multiplication operations are much more
costly in terms of computer execution time than addition operatioas.
The question of how suboptimal this method is may be investigated
in the following manner. Let K be the gain matrix of the optimal
delayed-state filter. Then the perturbation of this optimal gain

incurred by using the above partitioning scheme is

r
K (k) = z F K, (0D, - K(K). (4.33)
=l

& thus calculated can then be .sed in the performance analysis equations
of chapter III to calculate u, the performance index, W is a relative
measure of how suboptimal a particular partitioning is for a specific
system and can be used to evaluate several partitionings to determine

which one is the closest to being optimal (least suboptimal).
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V. AN EXAMPLE: NNSS INTEGRATED INERTIAL/DOPPLER-

SATELLITE NAVIGATION SYSTEM

In order to illustrate houw the preceding results may be applied,
we consider an inertial navigation system augmented by the Navy Naviga-
tion Satellite System (NNSS), also referred to as the Transit System.

In the next three sections, we will present the model of the system and
derive expressions for the noise covariance matrices., After some gener-
al comments on the method used to simulate the system, we will present
the results of two performance analyses for wmodeling changes and the re-
sults on the performance of a partitioned-state suboptimal filter.

For our example, we consider a terrestial (low-altitude) vehicle
using a strapped-down inertial system, with the vertical channel being
implemented by other than inertial means. A geocentric latitude-longi-
tude coordinate system is used.

Such an inertial navigation system is capable of providing global
navigaticnal information, but suffers from long term "drift" errors. To
compensate for this "drift," another source of information may be used to

y
periodicaliy correct the inertial system, That is the role of the NNSS
here. The role of the Kalman filter is to integrate the two systems in
an optimal fashion. A schematic representation of the integrated system
is shown in Fig. 4,

Periodically the vehicle receives a message signal from one of the

satellites., The message signal gives the satellite's position and other
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miscellaneous information. Due to the relative velocity between the
satellite and the vehicle, a doppler shift in the signal frequency oc-
curs, Using the satellite's position and a measurement of the accumu-
lated doppler count over a time interval (approximately twenty seconds),
information about the inertial system's errors can be inferred. Since
the measurement process is noisy and the errors in the inertial system
are inherently random, a Kalman filter can be used to obtain a better
estimate of the inertial system errors than could be obtained by using
the raw measurement,

As we shall see in Section B, a delayed-state filter is required
because the measurement vector (a scalar in this case) depends upon the
number of doppler counts accumulated over the interval between sample
times. The fact that the measurement vector is a scalar makes this sys-
tem particularly attractive from a computational point of view since the
Q matrix is a scalar and taking its inverse is a trivial operation. On
the other hand, a delayed-state filter, which places greater demands on
the computational ability of the on-board computer than the usual Kalman

filter, is required.

A. The Plant Model

The error model for the inertial system may be described by two

basic equations, Pitman ~23]. The two equations are

-

T wX f=¢€ (5.1)
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e M ° 2
SR+ 20 X SR+ @ X 6R+ ® X © X 6R = 8a - ¥ X a - w R (5.2)

where all the above variables are three-dimensional vectors, the cross

X indicates the vector cross product, and

y=¢ - 86,

¢ = platform coordinate frame error vector,

68

computer coordinate frame error vector,
w = platform angular rate vector with respect to an inertial
frame of reference,

€ = gyro "drift" rate (bias) error vector,

6R = radial position error vector,
da = accelerometer "bias" error vector,

a = sensed "acceleration" vector (including both inertial and

mass attraction acceleration),

6Rtan = tangential component of R to the earth,
2
w, = gm/R, & is the mass attraction acceleration and R is the

nominal magnitude of the earth's radius vector plus the

nominal altitude of the vehicle.

Equation (5.1) describes the "twenty-four hour dynamics" in terms
of the difference between the angular error in th2 orientation of the
platform frame and the computer frame. Equation (5.2) describes the
position error propagation, the "eighty-four minute'" or "Shuler" dynamics.
The third component equation in (5.2) will not be used since that channel

is to be implemented by other means, such as by an altimeter.
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Since the system is a strapped-down system, the gyro drift errors
and accelerometer biases given in the platform frame must be transformed
through a continuously updated direction cosine matrix into the computer
frame to be used in equations (5.1) and (5.2).

The random process driving functions in the plant equations (5.1)
and (5.2) are the gyro drift rate and the accelerometer bias, To fit
the form required by the Kalman filter, these processes must be gaussian
white noise with zero mean. By physical observation, this is obviously
not true. The standard method for circumventing this difficulty will be
enployed, We consider the components of € and 5a to be correlated noise
processes driven by gaussian white noise with zero mean.

More specifically, we assume that the components of € and 6a are

first order Markov processes of the form
X + Bx = V2o B £(t) (5.3

where f(t) is unity white noise. Augmenting the state with six addition-
al states due to € and 5a, the plant model is now in the form required by
the Kalman filter,

In addition, three more state variables are needed to complete the
model. One is needed for the vertical position error, one for the verti-
cal velocity error, and one for the doppler count bias error.

The vertical velocity error and the count bias error will be modeled
by an equation of the form of (5.3). The model is one which can be made

to fit a variety of situations and implementations by adjustment of the




parameters ¢ and 8.
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For very small 3, the process approaches a true bias

and for very large B thc process approaches white noise, The amplitude

is adjusted by 0.

The vertical position error is taker to be the integral of the ver-

tical velocity error and is thus a nounatationary process,

The coordinate frames to be used are defined as tollows:

X, Y, Z

x’ Y’z

' ' '
X5 ¥, 2

it

earth-fixed frzme with X through the north pole
and Z through the intersection of the equator and
the Greenwich meridian,

geocentric navigation frame with x north, y west,
and z up

body-mounted instrument-cluster reference frame
with x' nose, y' left wing, and z' through the

roof.

The relationships of the three frames are shown in Fig. 5.

For convenience, we replace éRx and GRY in equation (° ¢) by their

angular equivalents in terms of GGX and 69y,

6Rx Réey

&R = - R§E
y
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Fig. 5. Relationship between the XYZ, xyz, and x'y'z' coordinate frames

2= Yy
Xy = 4,
= §9
X, 6’x
X = va/w
o
= £9
Xe y
x, =8/
7 y¢o
= <
Xg = RZ/R
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X9 = 6:x'/wo
Xg = € )
n- €z'/wo
X1y = ax,/sz
X4 = éay,/ng
*14 = 5az,/Rm§
Xi5 = 6ﬁz/Rm§
X1 = &N

where 6N is the doppler count bias error. Note that the state variables
have been chosen to be dimensionless quantities.
After a great deal of algebraic manipulation, we obtain the follow-

ing nonzero elements of the A matrix (Brown [5]):

al,2 = wz
a1’3 = - wy
al’9 =, C_
a =w '




1,11

2,1

2,3

2,9

2,10

2,11

3,1

3,2

3,9

3,10

3,11
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5,4

5,5

5,6

5,7

5,8

5,12

5,13

35,14

5,15

6,7

7,2

7,3
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7,5

7,6

7,7

7.8

7,12
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3,10 = " By
312,12~ "~ Bs
313,13 = ~ B
34,14 = " B
215,15 = - B1
416,16 = ~ Pg

where C denotes the direction cosine between the subscripted coordinate
axes, A denotes the incremental change in the indicated quantities over
the time interval At = terl = ke and average values over the At interval
are implied for the other quantities, Assuming a small At compared to
the time constants of the dynamics, average values are used so that an

exponential routinz can be used to compute the transition matrix.

Notice that the A matrix is in the general partitioned form:

[ 1
11 : *12
(8 x 8 | (8 x 8)
A= ______I______ "
¢ l %22
I
8x8 | (8x8
| diagonal




}
]
|

The state variables were ordered so as to simplify the computation of

the transition matrix,

R, ‘The Measurement Model

In this section, we derive the measurement model for the integrated
NNSS. The approach is the same as in Brown [5] and Brown and Hagerman [67.
The equation for the ideal count observed at the receiver for the

time interval (t t,) is given in Stansell [30],

k-1’
N(K) = 2FAT + 3= (p(K) - p(k-D)] (5.4)
G

where

AF = fixed offset in transmitter and local oscillator
frequencies (32 kHz),

AT = time interval betweern timing marks referred to the
satellite time base,

» . = wavelength of the local oscillator,

[ @]
|

= range from the observer to the satellite,

A number of sources of errcr are present in the count measurement
process. First, oscillaters are not so stable that the local oscillator
offset can pe maintained at 32 kHz indefinitely, sc some unknown bias
cffect will be present, Secondly, refraction due to the atmosphere af-

fects the rf signal from the satellite., This is particularly true when
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the satellite passes low over the horizoa. Lastly, jitter in the count-
ing electronics introduces additional random error.

These sources of error in the count measurement will be considered
as the sum of a correlated process and an uncorrelated process. The
correlated part we model as a first order Markov process and designate
as state variable X1g- The uncorrelated part we assume to be the gaus=-
sian white noise process in our measuremernt model. Thus, the measured

count is given by

Nm(k) = AFAT + fL [pk) - p(k-1)] - 8N(k) - v(k). (5.5)
G

If the inertial system were without error, the computed count
would be given by equation (5.4)., But since the inertial system is in
error, the range computed will be in error by some amount. Thus, the

computed count is given by
Nc(k) = AFAT + fL [p(k) + 8p(k) - p(k-1) - 6p(k-1)]  (5.6)
G

where 5p is the error in the range due to the position error in the in-
ertial system, We assume that the position of the satellite is known
perfectly.
Taking the difference between Nc and Nm, we obtain
y(k) = Nc(k) ~ Nm(k) = fL [6p(k) - 8p(k=-1)7 4+ SN(k) + v(k).
G

(5.7)
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To obtain the form required by the delayed-state filter, we must
examine the fr terms. The expression for 6p is given in Brown and

Hagerman "7] as

bp =

o I~

C(R- 86 -
C(R Rs czzs)sRz + (RRS cyzs),ox (RRS cxzs)éey1 (5.8)

where R is the radial distance from the center of the earth to the vehi-

ii
cle, Rs is the radial distance from the center of the earth to the satel-
lite, and C , C , and C are the direction cosines between the
xz ' yz, 2z
navigation axes and the satellite zg axis which coincideswith the radial
vector between the center of the earth and the satellite,
The range is computed from
2 2 X
o= (R +RS-2 RRs sz ) 5.9
s
Noti 8 = o5 = R = d = -
Noting that § <= % ) y Xes 5Rz/R Xg, an SN X167 the mea

surement model now fits the required form,

y(k) = M(k)x(k) + N(k)x(k~1) + v(k). (5.10)

where

M(k) =:00 0 b(k) 0 c(k) D Raky) 000000GC 1],
N(k) =000 -b(k-1) 0 c(k-1) 0 -Ra(k-1) 000000 0 0],

a(k)

"R-R C 1,
S zZ

b (k)
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and

1
c(k) = ~-—1[RR_C_].
)Gp s xzs

The model for the system is now complete., We turn now to the de-

rivation of the noise covariance matrices to be used in the filter,

C. The Noise Covariance Matrices

The derivation of the nonzero terms in the H matrix is a straight
forward exercise in classical random process theory. The value of the
V matrix (a scalar) is based on physical intuition and simulation results,
Brown L5].

By imspoction, the first three diagonal terms are white noise con-

stants due to gyro drift,

2
b1, =W
2
Ba2 =9
2
hy 3 = U

Similarly, the fifth and seventh diagonal terms are white noise

constants due to accelerometer bias.

2
hg 5 = Us

2
by =Y
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The state equation for the first gyro drift component, xg, is

:’cg(t) = - Szxg(t) + \‘202282 £(t) . (5.11)

Solving equation (5.11) over the time interval (tk, tk+1)’

At
x9(k+1) = exp(-82At) xg(k) + ~/. V2o 82 exp(-BzT) f(t-1) d7 (5.12)
2
()

where At = tk+1 -t The hg’g(k) term is the covariance of the response

of x9(k+1) due to f(t) betwezen t, and t

k 1’ -8

At At
hy g(k) EC [ VZGZZBZ exp(—BzT) f(t-T1) dT “}20282 exv(-B?_s) f(t-8) ds]
[ (o]

At At
20;32 j f expl - 82(T+s)]E[f(t-'r) f(t-s)1 d7ds
[o] fo}

At At

2 (-

l282] / expl- B,(Ts)16(T-5) drds
o 0

2 -
=0, {1 - exp(—ZBZAt)]

where * is used here to denote the Dirac delta function.
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Similarly:

1]
Q

hlo’lo\k) 3 L1 - exp(-2 B3At)]

hll,ll(k) = GZ [1 - exp(-z BaAﬁ)]

n
Q
U N
r~
ot
'

21 - exp(-2 BAD)]

I
Q

By3,130

hl&,ll;(k) = Gg [1 - exP(’z B7At)]

2
hlS,lS(k) = 01 [1 - exp("z BlAt)]
; 2
By, 16 = 08 [1 - exp(-2 Ban)] .
The state variable xg is merely the integral 6f X159 thus

2w202 At At

h8’8(k) = —;-1—1.- [ / (1 - exp(-BlT)][l - exp(-ﬁls)]é('r-s\ drds
o (e}

2m§o§

= - {alm - A1 - exp(-5,a0)] + {1 - exp(-zﬂlat)l}-
B .

1
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The ounly cross-covariance terms which are present are h and

8,15

hlS,S which are equal.

hg y5(k) = hyg g(K)

At At
/ [ Zg%wo[l - exp(-BlT)] exp(-Bls) §(T-s) dtds
o o

2
20w

1 5
= —qg {[1 - exp(-B,at)] - 31 - exv(—zBlAt)J} .
Of course, values of the o's and the B's must be determined., In
our simulations, we shall assume values which we presume correctly char-
acterize the random processes. We will base our choice of values on

simulations of this system.

D, Gereral Comments on the Simulation Study

A few comments are in order concerxning the vatues of the statistical
parameters used in wur simulations and how they were obtained.

The value »f P(0{0) is based upon the discussion in Brown [ 5] on
establishing initial c.:nditions for the optimal filter for the system
considered here, The uctual numerical values are the result of a trial
and error simulation study of the performance of the optimal filter using

actual flight test data. The optimal filter pecformed "best'" when the

chosen pirameters were used, Upon thzt basis, the selected values are
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assumed to correctly characterize the random processes involved for the
purposes of this study,

The values in the initial covariance matrix are chosen in the xyz
navigation coordinate system and are then referred,via a linear trans-
formation into the body-mounted :oordinate system, in which the actual
initial aligmment of the system takes place.

In the %xyz coordinate system, the initial estimation error covar-

*
iance matrix is a diagonal mwatrix P (0|0) with

* _ = 800 se * 9 x 1074/ 5§§\2
Pi1° sec Pg 9 = v sec)
P3 2= PY 1 Po,10 = P5,9

- 100 Tin’ p* p
Py 3 11,11~ Pg 9
= 100/R? (R in feet) = 400 Sec?
P4 = in Pi2,12 =
22, 1.2 B
% 5 = 0.01/w R"(sec ) Pi3,13 = Piz,12
P36 = Ph4 Pis,14 = Pi2,12
22, -1.2
p§,7 = pg’s pfS,lS = 0.04ﬁn°R (sec )
p% _ = 40000/R> - 10°
8,8 Pi6,16 =
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The linear transformation relating the state in the xyz coordinate

system to the state in the x'y'z' coordinate system is given by

Ig) ¢ |

T= |r|¢_|¢
] ‘-6 l}:

. q- 'F 1.

I 2

where [ is the three by three direction cosine matrix relating the angu-
lar orientation ecf.the body-mounted coordinate system with respect to the

navigation coordinate frame.

Cx'x Cx'y Cx‘z
= 1% Gy G
_Cz'x Cz'y Cz’zJ

The initial estimation error covariance matrix to be used in the

filters is given, in the x'y'z' coordinate system, by
P(0]0) = TP*(0|O)T'.

The variances and inverse time constants used to characterize the

random processes in the system model are as follows:

accelerometer biases: 02 = 400 5222

8 = 1/15 hr t
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2
0.09 955)
hr

. 2
gyro biases: O

1/15 hr'l

oy
It

initialized at 0 = 0.03 deg/hr

2
0.25 (22;)
sec

0.18 sec-1

vertical velocity error: 02

w
]

altitude error: initialized at o = 200 ft

doppler count bias: 02 = 106
B = 10" sec.1
2 2 2 .=t
whi*e noise constants: u; =u, =uy s 1 min /hr
2 2 2
ug = uy = 1 knot“ /hr

The measurement noise covariance matrix V(k) was set to the constant
value of 1600, !

To compare the performance of the different filters, true error
curves have been plotted with the estimates, The true error curves were
obtained by tracking the vehicle from ground stations. Due to the pro-

prietary nature of this data, the plots have been normalized.
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E. Design Model Based on a Simplified Direction Cosine Matrix

In order for the A matrix in the system model to be evaluated at
each stage, the direction cosine matrix relating the body-mounted co-
ordinate system must be updated at each stage. Under the assumption of
level flight, the computation of this matrix becomes considerably sim-
plified. We discuss here the results of using a de.ign system model
based on this assumption,

Define the roll angle a as the rotation of the body-mounted system
about the x axis, the pitch angle B as the rotation of the body-mounted
system about the -y axis, and the yaw angle Yy as the rotation of the
body-mounted system about the -z axis. The direction cosine matrix F-l

relating the body-mounted system to the navigational system becomes

(see, e.g., Pitman [ 23])

cacy casy - sasfBey -sisy - cOsfecy 1
~1
= -c3sy cacy + sasBsy ~50cY
. sP sacB casBsy i

where ¢ and s indicate the cosine and sine of the indicated angle, re-
spectively.

If level flight is assumed, the only angular displacement which oc~
curs between the body-mounted system and the navigational system is in

vaw  The resulting simplified direction cosine matrix is
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[ cy sy 01

Fd = |~-sy cy 0

Using “;1 in the evaluation of the A matrix results in a design
medel which is used in the delayed-state filter as in chapter 3, section
A. We call this model design model 1.

Figure 6 shows the normalized estimates of the latitude error of the
optimal filter and the suboptimal filter resulting from this design model
as a function of the flight time in Greenwich mean time. For comparison,
the normalized true latitude error curve is shown also, Similarly, the
longitude error estimates are shown in Fig. 7.

Upon comparison of Fig. 6 and 7, we see little change in the filter's
performance is introduced by the assumption of level flight. This result
was found to be true for the estimates of the other state variables also.

The design model resulting from this simplification is by itself
not much simpler than the original model. However, this simplification
would probably be made in conjunction with other modifications in the
original model such as those to be discussed in the next section, To
assess the effect of each change in the model on the filter performance,
the changes must be made one at a time in order to determine which one

is at fault if poor performance results.
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F. Design Model Based on Simpiified Dynamics in th .evel Channels

We present here the results of using a design model! tased upen sur-
plification of the dynamical equations for the error in he two level
channels.

The basic equation used to derive the two level channel equations
for the original model is equation (5.2).

. 2
SR+ 2w X SR+ w X5R+w X(w X §R)= 6a-\an-wo Rean

A number of simplifying assumptions on this equaticn seem reasonable

due to the nature of the v hicie and typical flights,

If ® is set equal to zero (AW < < ub in a At interval), the centripital
acceleration is neglected, and R is considered to remain constant (AR < <R

in a At interval), then equation (5.2) becomes

. ' 2
SR+ 20 X R = 6a - ¥ X a - w Rtan

and the two level channel equations become

s = 7 Y9%%

P
n

- WXy t anx7 - woLny'x12 + Cyy'x13 + Cyz'x14] - 2mzx15

- Zwyx15 .

»
]

g = - WX, - ZDZxS - WX+ wo[Cxx,x12 + ny,x13 + sz,xla]




A
w

By repla<ing tis: elevercs of tiie fifth and seventh rows of the A
matrixz of the oviginal wedzl with the coeffizients cf the above wi-wtions
we obrain the design model A matrix., We call the resultine model cetis
model 2,

Ihe results of usiag desigu medel 2 in tue filter era shows [

Fig. 8 and Fig., 9. There is littie significant difference in the esti-
mates of both the latitude and longitude error. 1In fact, the suboptimal
estimates appear to be a little better than the optimal ones. At first
thought, this would be cause for concern, until it is noted that these
results are only one sample out of a possibly large ensemble of samples,
The only conclusion to be drawn is that the above assumptions do not
significantly alter the performance of the filter, at least for flight
trajectories similar to the one simulated.

The results of incorporating the simplifications of design model 1
and decign model 2 in one model are shown in Figs. 10 and 11, The effect
was nearly the same as using only one or the other cof the simplifications;
in fact, the performance was slightly better in th: longitude channel,

With efficient programming, a significant reduction can be made in
the computational effort required to comzute the transition matrix with-
out significant degradation in the filter's perinrmance by incorporating
the simplifications of design models 1 and 2. This is important because

the transition matrix must be computed at the end of each 20-second in-

terval throughout the duration of a flight.
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G. Suboptimization Using the Partitioning Method

Attempts were made to apply the partitioning method of chapter IV
to the above system for two choices of partitions. Although achieving
a considerable reduction in the computational requirements, both choices
resul .ed in unsatisfactory performance of the filter, Both the estimator
and the estimation error covariance matrix equations diverged rapidly
from the optimal filter results by several orders of magnitude after the
satellite pass period, During the pass period when measurement data is
available, transitory oscillations were observed,

In the first partitioning that was tried, the system was partitioned

into three subsystems, Subsystem one contained X1» X, and x_, 1i.e.,

S’
level channel one and the coupled psi variable. Subsystem twe contained

Xys Xe, and x_, i.e,, level channel two and the coupled psi variable,

7
The third subsystem contained Xys Ky Kgy Xgy o o o 5 Ky, i.e,, the
twenty-four hour dynamics, the altitude channel, and the first order
Markov instrument noise processes. The measurement y was used in all
three subsystems.

The second partitioning tried consisted of two subsystems, The first
sub: vstem contained the first eight state variables and X5 and X16° The

second subsystem contained x e o s Xyps the instrument noise processes,

92
The measurement y was used in both subsystems. This choice is equivalent
to modeling the gyro biases and accelerometer biases as white noise, Due

to the form of the measurement matrices M and N, the second subsystem
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state variables are estimated as the initial estimate projected through
the trausition matrix,

The divergence problem may be due to one or all of several factors.
First, the nature of the form of measurement for this system may not be
well suited to suboptimization by this method, Information about sixteen
state variables must be derived from a scalar measurement., This raises
the question of whether or not the observatility properties of the sy.:tem
place a constraint on the ch.ice of partitioning or, more fundamentally,
whether or not the partitioning method is applicable to the system at all,
However, both the observability of the above system and the relationship
of observability with the partitioning method remain unexplored problems.

A second important consideration is the fact that only two parti-
tionings were tried. It is believed that the successful application of
the method to this system is highly dependent on the proper choice of
partitioning.

A third factor, although not a dominant one, tc consider is the
error due to the digital computations. In any study of this sort,
truncation error and other numerical errors will occur to some degree,
The simulation of this system is particularly vulnerable since many of
the matrices involved are ill-conditioned and a great number of matrix
operations are requ.lred.

As a final consideration, in the derivation of the partitioning
method, the pseudo-inverse of the Cj's was used to approximate the total

system state in order to de-couple the subsystem model from the total
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system model, For many cases this mav be a very poor approximation,

For example, the first two subsystems of the first partitioning are

only three-dimensional and the total system is sixteen-dimensional.

Three of the total system state variables are approximated with the sub-
system state variables and the remaining are approximated as zero for
all time. As indicated above, it may be possible to improve this approx-

imation by a different choice of partitioning.
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VI. CONCLUSIONS

Many attempts to solve the excessive computational problem of the
Kalman filter may be categorized into two classes of suboptimizations.
The first class may be characterized by a simplification in the system
model that is used in the filter equations. The second class takes
advantage of a subontimal gain computation with the other filter equa-
tions remaining the same as for the optimal filter., Im chapter III,
we presented a performance analysis for both of the above classes of
suboptimication for the delayed-state Kalman filter. The derivation of
a suboptimization of the delayed-state filter, whicnh belongs to the
second class, was presented in chapter IV,

In chapter V, the results of a simulation study of the performance
of an integrated inertial/doppler-satellite navigation system were pre-
sented, It was found that for two types of model simplifications the
suboptimal filter performed very well in comparison to the optimal fil-
ter. On the other hand, attempts to apply the results of ~hapter IV
to that system were not very successful.

Several problems remain unsolved, Further experimentation might
result in a partitioning which results in a satisfactory performance by
the partitioned suboptimal filter for the above example.

A simulation of the performance analysis equatioas and use of the
performance index was not attempted. Yowever, the performauce index
was computed for the partitione.! filter and confirmed the other indica-

tions that the filter was not performing satisfactorily. Concerted




68

effort may result in the reduction of the performance analysis equations
for modeling changes to a simpler and more practical computational form,

Optimization of the partitioned filter by the choice of the Fj
matrices with respect to the mean-squared estimation error appears
possible, However, this would result in r additional recursive equations.
Their dimensionality would be less than that of the total system state
and the amount of total computation required should still be less than
that required by the optimal filter. The partitioned filter would still
be suboptimal with respect to the optimal one, but should have improved

performance over the partitioned filter presented in chapter 1V,
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VIII. APPENDIX:

DERIVATION OF A KALMAN FILTER WITH DELAYED-~STATES AS OBSERVABLES

We present here a derivation of the recursive equations for the
optimal delayed-state Kalman filter, The results of which were first
obtained through the work of Brown and Hartman [7]. Our method is not
the only approach that could be used, The derivation is presented
merely to make more rigorous and complete the results in the preceding
chapters.

The optimality of the filter is a consequence of a fundamental
theorem in estimation theory due to Sherman [26] which we will state
without proof (see Deutsch [8]). We will then state a more specialized
result which will be used in our derivation.

Let x(k) be an n-dimensional random variable with m-dimensional
measurements y(1), . . . , y(j). The conditional probability distri-

bution function of x(k) given y(1), . . . , y(k) is

FLEly(D), . . ., y(D] = B(x()=E|2(j)]

where P is a suitable prooability measure and z(j) is an mj-dimensional
vector whose components are y1(l), o e sy ym(l), e e s Yl(j), e e vy
Y-

We wish to estimate x(k) based only on the measurements y/l), . . . ,

A
y(j). We denote this estimate by x(klj). We are concerned here only with




71

the filter protlem when j = k. We have the smoothing problem when j > k
aund the prediction proolem when j < k.

We denote the estimation error by
~, 1. A .
x| 3) = x(&) - x(k|j).

We would like';(klj) to be zero. When it is not, we assign a penalty or
loss for an incorrect estimate. We do this by specifying an admissible

loss function Lf;(klj)] which has the following properties:

1. L is a non-negative function from R" to R,
2, L(0) = 0, where the first zero denotes the zero n-vector.

3. L[xb(k|j)1 2 L[xa(k[j)], whenever
g[ii(k]j)] 2 8[§;(k‘j)], vwhere g is a non-negative convex

function from Rn to R.
G LX) = L-Fx]nH] .

An estimate is optimal if it minimizes L.
We now state the fundamental theorem.
THEOREM 1,

If L is an admissible loss function and F[glz(j)T is:

a. Symmetric about its mean
b. Convex for all §SE<§}

then the optimal estimate is

x(k|j) = E{x(k)lz(j)} .
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The following theorem, which we also state without proof (see,
e.g., Meditch [187 or Kalman T13]), is a direct consequence of Theorem 1.
It is this result upon which the Kalman filter equations are based.
THEOREM 2.

If only the first and second moments of the stochastic processes
{x(k),k =0, 1, .. .} and {y(i), i=1,2, ..., j} are known, then
the optimal estimate for all admissible loss functions is the linear

estimate
x(kl9) = E{x(k)} + B, {2 - ©Lz(i)}

where sz is the n x mj cross-covariance matrix of x(k) and z(j) and
Pzz is the covariance matrix of z(j).
The model of our dynamical system was given in chapter II. We

repeat it here for convenience,

x(k+1)

@ (kt1,k)x(k) + u(k) (A.1)

y(ktl) = M(k+1)x(k+l) + N(k+1l)x(k) + v(ktl) (A.2)

The assumptions placed upon this modelin chapter II are required here
also.
From Theorem 1, the optimal estimate at k+l given measurements
y(, . . ., y(kl) is
)Ac(k+1|k+1) = E{x(k+1)|z(k+1)} . (A.3)
For any gaussian zero-mean random variables x, y, z (Papoulis [21]

or Meditch t18 D

E{xly,z} - a{xiy,z} ,
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where z = z - E{zly}, and

chly, 7} = fely) + e[},

Applying these formulas to (A.3), we find that

% (kL |1e+1) E{x(k+1)|z(k)} + E{x(k+1)|§'(k+1 |k)} (A.4)

% (k+1 k) + E{x (k+1) |7 (k+1 |k)}

"

where

y(+1]k) = y(k+l) - E{y(k+1)|z(k)} .

A
Letting y(k+1|k) be the optimal estimate of the measurement y(k+1)
~ A
given measurements through time k, we have y(k+l lk) = y(k+l) - y(k+1|k).

A
Expanding y(k+1 lk), noting that v(k+l) is independent of {y 1),... ,y(k)}.

§(k+1 k) E{M(k+1)x(k+1) + N(k+l)x (k) + v(k+l) Iz(k)}

M(kHL)% (k1 [K) + N (k+1)x (k| K) (A.5)
Noting that :2(k+1|k) = @(k+1,k):'c\(k|k), equation (A.4) becomes
X (HL JIH1) = 8 (kHl, k)% (k|k) + E{x(kﬂ)l;(kﬂ |k)} . (A.6)

Since x(k+l) and ;(k-’-l Ik) are zero mean and gaussian, we have as a

consequence of Theorem 2
g -1
E{x (k+1 +1ik) =P _P +1 A7
kaanFalo} - 2 2y0eiho @.7)

where Px; is the cross-ccvariance matrix of x(k+l) and ; (k+1lk) and
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PW is the covariance matrix of the measurement estimation error

?Gd-llk); i.e.,

P

5 E{x(k+1)y' (k+1|k)}

P...
yy

E{y e+ |K)F! (k1 |k)}

Defining K(k+l) = P x?P;;,, we have

E{x(k+1) ly (k41 |k)} = K(ktl) [y@+1) - M(k+L) 3Ck+L, k)R (k |K)
- Nk+1)% k&) ]
= K(k+1) [MQK+1) 2(k+L,k)x (k) + N(k+1)x(k)

+ vtl) - MQk+L) 8(k+1, k)R (k[k)
- N@HDRK|K)]
= K(k+1)[MQHL) S Qk+l,k) + N(k+1) Ik |[K)

+ K(k+l)v(k+l). (A.8)
Thus, the form of equation (A.6) which corresponds to equation (2.7) in

chapter 1II is

LGt |r4l) = RQGH) + Ry etl) - MEHDR 4L [K)
- NGxk]K)] . (A.9)
To evaluate K(k+1),
Py =E x (k+1)F' (k+1|k)}
E{[R(+L]k) - %Gl |k) IIM@EAL)R (k4L {k)
+ Nk+D)E(k |k) + v(k+1)]'}
P(k+1 |KOM' (k+1) + 3(k+1,k)P(k |K)N' (k1) YA.10)

where we have used the fact that v(k+l) is independent of x(k|k) and

P(k+1|k) by definition is E{x(lc+1|k)x(1<+1]k)}.
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Evaluating P~

-

E{[M(k+1)§(k+1 k) + NG+ )R k) + v(kt1) JMAH) R (kL [i)

+ NGERADR G k) + v(k+1)]'}

1]

M(k+1)P (k+1 [K)M' (k+1) + V(k*1) + N(k+1)P(k|k)N' (k+1)
+ M(k+1) 8 (k+1,k)P(k |k)N' (k+1)
+ [M(k+1)8 (k+1,%)P (k {iIN' Qkr1) " (A.11)

Upon comparing (A.ll) with equation (2.4) we see that Py~yv is Q£k+1).

Thus, the optimal gain matrix K(k+l) is given by

K(cH) = [PQl [IOM' (k#1) + & (k+1,k)P (k| KON' (k+1) 1Q” L (k+1)
(A.12)
where Q(k+1) is given by (A.1l}). The inverse will always exist since

V(k+l) is assumed positive definite.

P(k+1|k) is given by

P (k+1 k) E{;?(kﬂ k)% (k+1 lk)}

8 (k+1,k)P (k |K) ' (k+1,k) + H(k) (a.13)
Expanding X (k+l |k+1), we obtain

x(kHL |k+1) = [T = K(k+1)MEH) IX (k+1 k) - K(k+HLNH)x (k [k)
- K(k+1l)y(k+l).

Noting that E{?c'(k+1 lk);' (klk)} = é(k+1,k)P(k|k),
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P (k+1|k+1)

E{;(kﬂ [k+1)X" (k1 [kl ,\}

= P(k+l|k) - K(k+L)MQ +1)P(k+1}k)

(K (k+1)M(k+1)P(k+1 %) ]

K (k+1)N (k+1)P(k |k) & (k+1,k)

(R (+1IN(k+1) Pk [K)E T (k+1,k) ]

+

K (k+1)IM (1) P (k+1 k)M (k+1)
+ M(k+1) 3(k+1,k)P(k |K)N' (k+1)
+{ M(k+1)® (k+1,k)P(k [k)N' (k+1)}'

+ N(+L)P(k JlON' (k1) + V(k+1) K' (k+1) (A.14)
After some manipulation of (A.l4) and the use of equation (A.13),
P(k+l [k+l) = P(k+l|k) - K(k+1)Q(k+1)K' (k+1). (A.15)

Note that gkklk) is a gaussian zero mean process and, hence,
p(0]0) = E{x(O)x' (0)} since x(0]0) = E{x(O)} = 0.

This completes the derivation of the optimal delayed-state filter.
The data, beginning at time k = 1, are processed by cycling through
the recursive equations (A.13), (A.11), (A.12), (A.15), and (A.9) with

A
initial conditions P(OIO) = E{Q(O)x'(O)} and x(OIO) = 0,
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